- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Krapf, Diego (2)
-
Pacheco-Pozo, Adrian (2)
-
Sokolov, Igor_M (2)
-
Balcerek, Michał (1)
-
Burnecki, Krzysztof (1)
-
Metzler, Ralf (1)
-
Wyłomanska, Agnieszka (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Diffusion in heterogeneous energy and diffusivity landscapes is widespread in biological systems. However, solving the Langevin equation in such environments introduces ambiguity due to the interpretation parameter $$\alpha$$, which depends on the underlying physics and can take values in the range $$0<\alpha<1$$. The typical interpretations are It\^o ($$\alpha=0$$), Stratonovich ($$\alpha=1/2$$), and Hanggi-Klimontovich ($$\alpha=1$$). Here, we analyse the motion of a particle in an harmonic potential---modelled as an Ornstein-Uhlenbeck process---with diffusivity that varies in space. Our focus is on two-phase systems with a discontinuity in environmental properties at $x=0$. We derive the probability density of the particle position for the process, and consider two paradigmatic situations. In the first one, the damping coefficient remains constant, and fluctuation-dissipation relations are not satisfied. In the second one, these relations are enforced, leading to a position-dependent damping coefficient. In both cases, we provide solutions as a function of the interpretation parameter $$\alpha$$, with particular attention to the It\^o, Stratonovich, and Hanggi-Klimontovich interpretations, revealing fundamentally different behaviours, in particular with respect to an interface located at the potential minimum.more » « less
-
Pacheco-Pozo, Adrian; Balcerek, Michał; Wyłomanska, Agnieszka; Burnecki, Krzysztof; Sokolov, Igor_M; Krapf, Diego (, Physical Review Letters)
An official website of the United States government
